Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Manipulated Object Proposal: A Discriminative Object Extraction and Feature Fusion Framework for First-Person Daily Activity Recognition (1509.00651v3)

Published 2 Sep 2015 in cs.CV

Abstract: Detecting and recognizing objects interacting with humans lie in the center of first-person (egocentric) daily activity recognition. However, due to noisy camera motion and frequent changes in viewpoint and scale, most of the previous egocentric action recognition methods fail to capture and model highly discriminative object features. In this work, we propose a novel pipeline for first-person daily activity recognition, aiming at more discriminative object feature representation and object-motion feature fusion. Our object feature extraction and representation pipeline is inspired by the recent success of object hypotheses and deep convolutional neural network based detection frameworks. Our key contribution is a simple yet effective manipulated object proposal generation scheme. This scheme leverages motion cues such as motion boundary and motion magnitude (in contrast, camera motion is usually considered as "noise" for most previous methods) to generate a more compact and discriminative set of object proposals, which are more closely related to the objects which are being manipulated. Then, we learn more discriminative object detectors from these manipulated object proposals based on region-based convolutional neural network (R-CNN). Meanwhile, we develop a network based feature fusion scheme which better combines object and motion features. We show in experiments that the proposed framework significantly outperforms the state-of-the-art recognition performance on a challenging first-person daily activity benchmark.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.