Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

DAG-Recurrent Neural Networks For Scene Labeling (1509.00552v2)

Published 2 Sep 2015 in cs.CV

Abstract: In image labeling, local representations for image units are usually generated from their surrounding image patches, thus long-range contextual information is not effectively encoded. In this paper, we introduce recurrent neural networks (RNNs) to address this issue. Specifically, directed acyclic graph RNNs (DAG-RNNs) are proposed to process DAG-structured images, which enables the network to model long-range semantic dependencies among image units. Our DAG-RNNs are capable of tremendously enhancing the discriminative power of local representations, which significantly benefits the local classification. Meanwhile, we propose a novel class weighting function that attends to rare classes, which phenomenally boosts the recognition accuracy for non-frequent classes. Integrating with convolution and deconvolution layers, our DAG-RNNs achieve new state-of-the-art results on the challenging SiftFlow, CamVid and Barcelona benchmarks.

Citations (150)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube