Papers
Topics
Authors
Recent
2000 character limit reached

Scalable Task-Based Algorithm for Multiplication of Block-Rank-Sparse Matrices (1509.00309v2)

Published 1 Sep 2015 in cs.DC

Abstract: A task-based formulation of Scalable Universal Matrix Multiplication Algorithm (SUMMA), a popular algorithm for matrix multiplication (MM), is applied to the multiplication of hierarchy-free, rank-structured matrices that appear in the domain of quantum chemistry (QC). The novel features of our formulation are: (1) concurrent scheduling of multiple SUMMA iterations, and (2) fine-grained task-based composition. These features make it tolerant of the load imbalance due to the irregular matrix structure and eliminate all artifactual sources of global synchronization.Scalability of iterative computation of square-root inverse of block-rank-sparse QC matrices is demonstrated; for full-rank (dense) matrices the performance of our SUMMA formulation usually exceeds that of the state-of-the-art dense MM implementations (ScaLAPACK and Cyclops Tensor Framework).

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.