Some Triangulated Surfaces without Balanced Splitting (1509.00269v1)
Abstract: Let G be the graph of a triangulated surface $\Sigma$ of genus $g\geq 2$. A cycle of G is splitting if it cuts $\Sigma$ into two components, neither of which is homeomorphic to a disk. A splitting cycle has type k if the corresponding components have genera k and g-k. It was conjectured that G contains a splitting cycle (Barnette '1982). We confirm this conjecture for an infinite family of triangulations by complete graphs but give counter-examples to a stronger conjecture (Mohar and Thomassen '2001) claiming that G should contain splitting cycles of every possible type.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.