Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Evolving Unipolar Memristor Spiking Neural Networks (1509.00105v1)

Published 1 Sep 2015 in cs.NE

Abstract: Neuromorphic computing --- brainlike computing in hardware --- typically requires myriad CMOS spiking neurons interconnected by a dense mesh of nanoscale plastic synapses. Memristors are frequently citepd as strong synapse candidates due to their statefulness and potential for low-power implementations. To date, plentiful research has focused on the bipolar memristor synapse, which is capable of incremental weight alterations and can provide adaptive self-organisation under a Hebbian learning scheme. In this paper we consider the Unipolar memristor synapse --- a device capable of non-Hebbian switching between only two states (conductive and resistive) through application of a suitable input voltage --- and discuss its suitability for neuromorphic systems. A self-adaptive evolutionary process is used to autonomously find highly fit network configurations. Experimentation on a two robotics tasks shows that unipolar memristor networks evolve task-solving controllers faster than both bipolar memristor networks and networks containing constant nonplastic connections whilst performing at least comparably.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.