Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Approximating (Unweighted) Tree Augmentation via Lift-and-Project, Part I: Stemless TAP (1508.07504v1)

Published 29 Aug 2015 in cs.DS

Abstract: In Part I, we study a special case of the unweighted Tree Augmentation Problem (TAP) via the Lasserre (Sum of Squares) system. In the special case, we forbid so-called stems; these are a particular type of subtree configuration. For stemless TAP, we prove that the integrality ratio of an SDP relaxation (the Lasserre tightening of an LP relaxation) is $\leq \frac{3}{2}+\epsilon$, where $\epsilon>0$ can be any small constant. We obtain this result by designing a polynomial-time algorithm for stemless TAP that achieves an approximation guarantee of ($\frac32+\epsilon$) relative to the SDP relaxation. The algorithm is combinatorial and does not solve the SDP relaxation, but our analysis relies on the SDP relaxation. We generalize the combinatorial analysis of integral solutions from the previous literature to fractional solutions by identifying some properties of fractional solutions of the Lasserre system via the decomposition result of Karlin, Mathieu and Nguyen (IPCO 2011). Also, we present an example of stemless TAP such that the approximation guarantee of $\frac32$ is tight for the algorithm. In Part II of this paper, we extend the methods of Part I to prove the same results relative to the same SDP relaxation for TAP.

Citations (24)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)