Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Mixed Gaussian-Impulse Noise Removal from Highly Corrupted Images via Adaptive Local and Nonlocal Statistical Priors (1508.07415v2)

Published 29 Aug 2015 in cs.CV

Abstract: The motivation of this paper is to introduce a novel framework for the restoration of images corrupted by mixed Gaussian-impulse noise. To this aim, first, an adaptive curvelet thresholding criterion is proposed which tries to adaptively remove the perturbations appeared during denoising process. Then, a new statistical regularization term, called joint adaptive statistical prior (JASP), is established which enforces both the local and nonlocal statistical consistencies, simultaneously, in a unified manner. Furthermore, a novel technique for mixed Gaussian plus impulse noise removal using JASP in a variational scheme is developed--we refer to it as De-JASP. To efficiently solve the above variational scheme, an efficient alternating minimization algorithm based on split Bregman iterative framework is developed. Extensive experimental results manifest the effectiveness of the proposed method comparing with the current state-of-the-art methods in mixed Gaussian-impulse noise removal.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube