Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

D4M: Bringing Associative Arrays to Database Engines (1508.07371v1)

Published 28 Aug 2015 in cs.DB

Abstract: The ability to collect and analyze large amounts of data is a growing problem within the scientific community. The growing gap between data and users calls for innovative tools that address the challenges faced by big data volume, velocity and variety. Numerous tools exist that allow users to store, query and index these massive quantities of data. Each storage or database engine comes with the promise of dealing with complex data. Scientists and engineers who wish to use these systems often quickly find that there is no single technology that offers a panacea to the complexity of information. When using multiple technologies, however, there is significant trouble in designing the movement of information between storage and database engines to support an end-to-end application along with a steep learning curve associated with learning the nuances of each underlying technology. In this article, we present the Dynamic Distributed Dimensional Data Model (D4M) as a potential tool to unify database and storage engine operations. Previous articles on D4M have showcased the ability of D4M to interact with the popular NoSQL Accumulo database. Recently however, D4M now operates on a variety of backend storage or database engines while providing a federated look to the end user through the use of associative arrays. In order to showcase how new databases may be supported by D4M, we describe the process of building the D4M-SciDB connector and present performance of this connection.

Citations (63)

Summary

We haven't generated a summary for this paper yet.