Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bilevel parameter learning for higher-order total variation regularisation models (1508.07243v1)

Published 28 Aug 2015 in math.OC and cs.CV

Abstract: We consider a bilevel optimisation approach for parameter learning in higher-order total variation image reconstruction models. Apart from the least squares cost functional, naturally used in bilevel learning, we propose and analyse an alternative cost, based on a Huber regularised TV-seminorm. Differentiability properties of the solution operator are verified and a first-order optimality system is derived. Based on the adjoint information, a quasi-Newton algorithm is proposed for the numerical solution of the bilevel problems. Numerical experiments are carried out to show the suitability of our approach and the improved performance of the new cost functional. Thanks to the bilevel optimisation framework, also a detailed comparison between TGV$2$ and ICTV is carried out, showing the advantages and shortcomings of both regularisers, depending on the structure of the processed images and their noise level.

Citations (113)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube