Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Discrete Hashing with Deep Neural Network (1508.07148v1)

Published 28 Aug 2015 in cs.CV

Abstract: This paper addresses the problem of learning binary hash codes for large scale image search by proposing a novel hashing method based on deep neural network. The advantage of our deep model over previous deep model used in hashing is that our model contains necessary criteria for producing good codes such as similarity preserving, balance and independence. Another advantage of our method is that instead of relaxing the binary constraint of codes during the learning process as most previous works, in this paper, by introducing the auxiliary variable, we reformulate the optimization into two sub-optimization steps allowing us to efficiently solve binary constraints without any relaxation. The proposed method is also extended to the supervised hashing by leveraging the label information such that the learned binary codes preserve the pairwise label of inputs. The experimental results on three benchmark datasets show the proposed methods outperform state-of-the-art hashing methods.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.