Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multi-armed Bandit Problem with Known Trend

Published 28 Aug 2015 in cs.LG | (1508.07091v4)

Abstract: We consider a variant of the multi-armed bandit model, which we call multi-armed bandit problem with known trend, where the gambler knows the shape of the reward function of each arm but not its distribution. This new problem is motivated by different online problems like active learning, music and interface recommendation applications, where when an arm is sampled by the model the received reward change according to a known trend. By adapting the standard multi-armed bandit algorithm UCB1 to take advantage of this setting, we propose the new algorithm named A-UCB that assumes a stochastic model. We provide upper bounds of the regret which compare favourably with the ones of UCB1. We also confirm that experimentally with different simulations

Citations (81)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.