Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Stabilizing Consensus with Many Opinions (1508.06782v1)

Published 27 Aug 2015 in cs.DC

Abstract: We consider the following distributed consensus problem: Each node in a complete communication network of size $n$ initially holds an \emph{opinion}, which is chosen arbitrarily from a finite set $\Sigma$. The system must converge toward a consensus state in which all, or almost all nodes, hold the same opinion. Moreover, this opinion should be \emph{valid}, i.e., it should be one among those initially present in the system. This condition should be met even in the presence of an adaptive, malicious adversary who can modify the opinions of a bounded number of nodes in every round. We consider the \emph{3-majority dynamics}: At every round, every node pulls the opinion from three random neighbors and sets his new opinion to the majority one (ties are broken arbitrarily). Let $k$ be the number of valid opinions. We show that, if $k \leqslant n{\alpha}$, where $\alpha$ is a suitable positive constant, the 3-majority dynamics converges in time polynomial in $k$ and $\log n$ with high probability even in the presence of an adversary who can affect up to $o(\sqrt{n})$ nodes at each round. Previously, the convergence of the 3-majority protocol was known for $|\Sigma| = 2$ only, with an argument that is robust to adversarial errors. On the other hand, no anonymous, uniform-gossip protocol that is robust to adversarial errors was known for $|\Sigma| > 2$.

Citations (73)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.