Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improved Analyses of the Randomized Power Method and Block Lanczos Method (1508.06429v2)

Published 26 Aug 2015 in cs.NA and math.NA

Abstract: The power method and block Lanczos method are popular numerical algorithms for computing the truncated singular value decomposition (SVD) and eigenvalue decomposition problems. Especially in the literature of randomized numerical linear algebra, the power method is widely applied to improve the quality of randomized sketching, and relative-error bounds have been well established. Recently, Musco & Musco (2015) proposed a block Krylov subspace method that fully exploits the intermediate results of the power iteration to accelerate convergence. They showed spectral gap-independent bounds which are stronger than the power method by order-of-magnitude. This paper offers novel error analysis techniques and significantly improves the bounds of both the randomized power method and the block Lanczos method. This paper also establishes the first gap-independent bound for the warm-start block Lanczos method.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.