Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A $N$-Body Solver for Square Root Iteration (1508.05856v2)

Published 24 Aug 2015 in cs.NA and math.NA

Abstract: We develop the Sparse Approximate Matrix Multiply ($\tt SpAMM$) $n$-body solver for first order Newton Schulz iteration of the matrix square root and inverse square root. The solver performs recursive two-sided metric queries on a modified Cauchy-Schwarz criterion, culling negligible sub-volumes of the product-tensor for problems with structured decay in the sub-space metric. These sub-structures are shown to bound the relative error in the matrix-matrix product, and in favorable cases, to enjoy a reduced computational complexity governed by dimensionality reduction of the product volume. A main contribution is demonstration of a new, algebraic locality that develops under contractive identity iteration, with collapse of the metric-subspace onto the identity's plane diagonal, resulting in a stronger $\tt SpAMM$ bound. Also, we carry out a first order {Fr\'{e}chet} analyses for single and dual channel instances of the square root iteration, and look at bifurcations due to ill-conditioning and a too aggressive $\tt SpAMM$ approximation. Then, we show that extreme $\tt SpAMM$ approximation and contractive identity iteration can be achieved for ill-conditioned systems through regularization, and we demonstrate the potential for acceleration with a scoping, product representation of the inverse factor.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.