Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

An Experimental Study of Distributed Quantile Estimation (1508.05710v1)

Published 24 Aug 2015 in cs.DB

Abstract: Quantiles are very important statistics information used to describe the distribution of datasets. Given the quantiles of a dataset, we can easily know the distribution of the dataset, which is a fundamental problem in data analysis. However, quite often, computing quantiles directly is inappropriate due to the memory limitations. Further, in many settings such as data streaming and sensor network model, even the data size is unpredictable. Although the quantiles computation has been widely studied, it was mostly in the sequential setting. In this paper, we study several quantile computation algorithms in the distributed setting and compare them in terms of space usage, running time, and accuracy. Moreover, we provide detailed experimental comparisons between several popular algorithms. Our work focuses on the approximate quantile algorithms which provide error bounds. Approximate quantiles have received more attentions than exact ones since they are often faster, can be more easily adapted to the distributed setting while giving sufficiently good statistical information on the data sets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube