Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Max $K$-Armed Bandit: A PAC Lower Bound and tighter Algorithms (1508.05608v1)

Published 23 Aug 2015 in stat.ML, cs.AI, and cs.LG

Abstract: We consider the Max $K$-Armed Bandit problem, where a learning agent is faced with several sources (arms) of items (rewards), and interested in finding the best item overall. At each time step the agent chooses an arm, and obtains a random real valued reward. The rewards of each arm are assumed to be i.i.d., with an unknown probability distribution that generally differs among the arms. Under the PAC framework, we provide lower bounds on the sample complexity of any $(\epsilon,\delta)$-correct algorithm, and propose algorithms that attain this bound up to logarithmic factors. We compare the performance of this multi-arm algorithms to the variant in which the arms are not distinguishable by the agent and are chosen randomly at each stage. Interestingly, when the maximal rewards of the arms happen to be similar, the latter approach may provide better performance.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube