Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A Deep Bag-of-Features Model for Music Auto-Tagging (1508.04999v3)

Published 20 Aug 2015 in cs.LG, cs.SD, and stat.ML

Abstract: Feature learning and deep learning have drawn great attention in recent years as a way of transforming input data into more effective representations using learning algorithms. Such interest has grown in the area of music information retrieval (MIR) as well, particularly in music audio classification tasks such as auto-tagging. In this paper, we present a two-stage learning model to effectively predict multiple labels from music audio. The first stage learns to project local spectral patterns of an audio track onto a high-dimensional sparse space in an unsupervised manner and summarizes the audio track as a bag-of-features. The second stage successively performs the unsupervised learning on the bag-of-features in a layer-by-layer manner to initialize a deep neural network and finally fine-tunes it with the tag labels. Through the experiment, we rigorously examine training choices and tuning parameters, and show that the model achieves high performance on Magnatagatune, a popularly used dataset in music auto-tagging.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.