Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Deep Bag-of-Features Model for Music Auto-Tagging (1508.04999v3)

Published 20 Aug 2015 in cs.LG, cs.SD, and stat.ML

Abstract: Feature learning and deep learning have drawn great attention in recent years as a way of transforming input data into more effective representations using learning algorithms. Such interest has grown in the area of music information retrieval (MIR) as well, particularly in music audio classification tasks such as auto-tagging. In this paper, we present a two-stage learning model to effectively predict multiple labels from music audio. The first stage learns to project local spectral patterns of an audio track onto a high-dimensional sparse space in an unsupervised manner and summarizes the audio track as a bag-of-features. The second stage successively performs the unsupervised learning on the bag-of-features in a layer-by-layer manner to initialize a deep neural network and finally fine-tunes it with the tag labels. Through the experiment, we rigorously examine training choices and tuning parameters, and show that the model achieves high performance on Magnatagatune, a popularly used dataset in music auto-tagging.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube