Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Cohesiveness Relationships to Empower Keyword Search on Tree Data on the Web (1508.04957v1)

Published 20 Aug 2015 in cs.DB

Abstract: Keyword search is the most popular querying technique on semistructured data. Keyword queries are simple and con- venient. However, as a consequence of their imprecision, the quality of their answers is poor and the existing algorithms do not scale satisfactorily. In this paper, we introduce the novel concept of cohesive keyword queries for tree data. Intuitively, a cohesiveness relationship on keywords indicates that they should form a cohesive whole in a query result. Cohesive keyword queries allow term nesting and keyword repetition. Although more expressive, they are as simple as flat keyword queries. We provide formal semantics for cohesive keyword queries rank- ing query results on the proximity of the keyword instances. We design a stack based algorithm which efficiently evaluates cohesive keyword queries. Our experiments demonstrate that our approach outperforms in quality previous filtering semantics and our algorithm scales smoothly on queries of even 20 keywords on large datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.