Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Fast, Flexible Models for Discovering Topic Correlation across Weakly-Related Collections (1508.04562v1)

Published 19 Aug 2015 in cs.CL and cs.IR

Abstract: Weak topic correlation across document collections with different numbers of topics in individual collections presents challenges for existing cross-collection topic models. This paper introduces two probabilistic topic models, Correlated LDA (C-LDA) and Correlated HDP (C-HDP). These address problems that can arise when analyzing large, asymmetric, and potentially weakly-related collections. Topic correlations in weakly-related collections typically lie in the tail of the topic distribution, where they would be overlooked by models unable to fit large numbers of topics. To efficiently model this long tail for large-scale analysis, our models implement a parallel sampling algorithm based on the Metropolis-Hastings and alias methods (Yuan et al., 2015). The models are first evaluated on synthetic data, generated to simulate various collection-level asymmetries. We then present a case study of modeling over 300k documents in collections of sciences and humanities research from JSTOR.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.