Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Personalized QoS Prediction of Cloud Services via Learning Neighborhood-based Model (1508.04537v1)

Published 19 Aug 2015 in cs.DC and cs.PF

Abstract: The explosion of cloud services on the Internet brings new challenges in service discovery and selection. Particularly, the demand for efficient quality-of-service (QoS) evaluation is becoming urgently strong. To address this issue, this paper proposes neighborhood-based approach for QoS prediction of cloud services by taking advantages of collaborative intelligence. Different from heuristic collaborative filtering and matrix factorization, we define a formal neighborhood-based prediction framework which allows an efficient global optimization scheme, and then exploit different baseline estimate component to improve predictive performance. To validate the proposed methods, a large-scale QoS-specific dataset which consists of invocation records from 339 service users on 5,825 web services on a world-scale distributed network is used. Experimental results demonstrate that the learned neighborhood-based models can overcome existing difficulties of heuristic collaborative filtering methods and achieve superior performance than state-of-the-art prediction methods.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube