Papers
Topics
Authors
Recent
Search
2000 character limit reached

Learning Meta-Embeddings by Using Ensembles of Embedding Sets

Published 18 Aug 2015 in cs.CL | (1508.04257v2)

Abstract: Word embeddings -- distributed representations of words -- in deep learning are beneficial for many tasks in NLP. However, different embedding sets vary greatly in quality and characteristics of the captured semantics. Instead of relying on a more advanced algorithm for embedding learning, this paper proposes an ensemble approach of combining different public embedding sets with the aim of learning meta-embeddings. Experiments on word similarity and analogy tasks and on part-of-speech tagging show better performance of meta-embeddings compared to individual embedding sets. One advantage of meta-embeddings is the increased vocabulary coverage. We will release our meta-embeddings publicly.

Citations (29)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.