Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On connectivity in a general random intersection graph (1508.03890v1)

Published 17 Aug 2015 in cs.DM, cs.SI, math.PR, and physics.soc-ph

Abstract: There has been growing interest in studies of general random intersection graphs. In this paper, we consider a general random intersection graph $\mathbb{G}(n,\overrightarrow{a}, \overrightarrow{K_n},P_n)$ defined on a set $\mathcal{V}n$ comprising $n$ vertices, where $\overrightarrow{a}$ is a probability vector $(a_1,a_2,\ldots,a_m)$ and $\overrightarrow{K_n}$ is $(K{1,n},K_{2,n},\ldots,K_{m,n})$. This graph has been studied in the literature including a most recent work by Ya\u{g}an [arXiv:1508.02407]. Suppose there is a pool $\mathcal{P}n$ consisting of $P_n$ distinct objects. The $n$ vertices in $\mathcal{V}_n$ are divided into $m$ groups $\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_m$. Each vertex $v$ is independently assigned to exactly a group according to the probability distribution with $\mathbb{P}[v \in \mathcal{A}_i]= a_i$, where $i=1,2,\ldots,m$. Afterwards, each vertex in group $\mathcal{A}_i$ independently chooses $K{i,n}$ objects uniformly at random from the object pool $\mathcal{P}_n$. Finally, an undirected edge is drawn between two vertices in $\mathcal{V}_n$ that share at least one object. This graph model $\mathbb{G}(n,\overrightarrow{a}, \overrightarrow{K_n},P_n)$ has applications in secure sensor networks and social networks. We investigate connectivity in this general random intersection graph $\mathbb{G}(n,\overrightarrow{a}, \overrightarrow{K_n},P_n)$ and present a sharp zero-one law. Our result is also compared with the zero-one law established by Ya\u{g}an.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)