Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Tale of Two Metrics: Simultaneous Bounds on Competitiveness and Regret (1508.03769v1)

Published 15 Aug 2015 in cs.DS

Abstract: We consider algorithms for "smoothed online convex optimization" problems, a variant of the class of online convex optimization problems that is strongly related to metrical task systems. Prior literature on these problems has focused on two performance metrics: regret and the competitive ratio. There exist known algorithms with sublinear regret and known algorithms with constant competitive ratios; however, no known algorithm achieves both simultaneously. We show that this is due to a fundamental incompatibility between these two metrics - no algorithm (deterministic or randomized) can achieve sublinear regret and a constant competitive ratio, even in the case when the objective functions are linear. However, we also exhibit an algorithm that, for the important special case of one-dimensional decision spaces, provides sublinear regret while maintaining a competitive ratio that grows arbitrarily slowly.

Citations (89)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.