Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 54 tok/s
Gemini 2.5 Flash 140 tok/s Pro
Kimi K2 208 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Tale of Two Metrics: Simultaneous Bounds on Competitiveness and Regret (1508.03769v1)

Published 15 Aug 2015 in cs.DS

Abstract: We consider algorithms for "smoothed online convex optimization" problems, a variant of the class of online convex optimization problems that is strongly related to metrical task systems. Prior literature on these problems has focused on two performance metrics: regret and the competitive ratio. There exist known algorithms with sublinear regret and known algorithms with constant competitive ratios; however, no known algorithm achieves both simultaneously. We show that this is due to a fundamental incompatibility between these two metrics - no algorithm (deterministic or randomized) can achieve sublinear regret and a constant competitive ratio, even in the case when the objective functions are linear. However, we also exhibit an algorithm that, for the important special case of one-dimensional decision spaces, provides sublinear regret while maintaining a competitive ratio that grows arbitrarily slowly.

Citations (89)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.