Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Convergence rates of sub-sampled Newton methods (1508.02810v2)

Published 12 Aug 2015 in stat.ML

Abstract: We consider the problem of minimizing a sum of $n$ functions over a convex parameter set $\mathcal{C} \subset \mathbb{R}p$ where $n\gg p\gg 1$. In this regime, algorithms which utilize sub-sampling techniques are known to be effective. In this paper, we use sub-sampling techniques together with low-rank approximation to design a new randomized batch algorithm which possesses comparable convergence rate to Newton's method, yet has much smaller per-iteration cost. The proposed algorithm is robust in terms of starting point and step size, and enjoys a composite convergence rate, namely, quadratic convergence at start and linear convergence when the iterate is close to the minimizer. We develop its theoretical analysis which also allows us to select near-optimal algorithm parameters. Our theoretical results can be used to obtain convergence rates of previously proposed sub-sampling based algorithms as well. We demonstrate how our results apply to well-known machine learning problems. Lastly, we evaluate the performance of our algorithm on several datasets under various scenarios.

Citations (153)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.