Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Editing to a Planar Graph of Given Degrees (1508.02773v1)

Published 11 Aug 2015 in cs.DS and cs.CC

Abstract: We consider the following graph modification problem. Let the input consist of a graph $G=(V,E)$, a weight function $w\colon V\cup E\rightarrow \mathbb{N}$, a cost function $c\colon V\cup E\rightarrow \mathbb{N}$ and a degree function $\delta\colon V\rightarrow \mathbb{N}_0$, together with three integers $k_v, k_e$ and $C$. The question is whether we can delete a set of vertices of total weight at most $k_v$ and a set of edges of total weight at most $k_e$ so that the total cost of the deleted elements is at most $C$ and every non-deleted vertex $v$ has degree $\delta(v)$ in the resulting graph $G'$. We also consider the variant in which $G'$ must be connected. Both problems are known to be NP-complete and W[1]-hard when parameterized by $k_v+k_e$. We prove that, when restricted to planar graphs, they stay NP-complete but have polynomial kernels when parameterized by $k_v+k_e$.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.