Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Editing to a Planar Graph of Given Degrees (1508.02773v1)

Published 11 Aug 2015 in cs.DS and cs.CC

Abstract: We consider the following graph modification problem. Let the input consist of a graph $G=(V,E)$, a weight function $w\colon V\cup E\rightarrow \mathbb{N}$, a cost function $c\colon V\cup E\rightarrow \mathbb{N}$ and a degree function $\delta\colon V\rightarrow \mathbb{N}_0$, together with three integers $k_v, k_e$ and $C$. The question is whether we can delete a set of vertices of total weight at most $k_v$ and a set of edges of total weight at most $k_e$ so that the total cost of the deleted elements is at most $C$ and every non-deleted vertex $v$ has degree $\delta(v)$ in the resulting graph $G'$. We also consider the variant in which $G'$ must be connected. Both problems are known to be NP-complete and W[1]-hard when parameterized by $k_v+k_e$. We prove that, when restricted to planar graphs, they stay NP-complete but have polynomial kernels when parameterized by $k_v+k_e$.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.