Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Probabilistic Power Flow Computation via Low-Rank and Sparse Tensor Recovery (1508.02489v1)

Published 11 Aug 2015 in cs.CE, math.ST, and stat.TH

Abstract: This paper presents a tensor-recovery method to solve probabilistic power flow problems. Our approach generates a high-dimensional and sparse generalized polynomial-chaos expansion that provides useful statistical information. The result can also speed up other essential routines in power systems (e.g., stochastic planning, operations and controls). Instead of simulating a power flow equation at all quadrature points, our approach only simulates an extremely small subset of samples. We suggest a model to exploit the underlying low-rank and sparse structure of high-dimensional simulation data arrays, making our technique applicable to power systems with many random parameters. We also present a numerical method to solve the resulting nonlinear optimization problem. Our algorithm is implemented in MATLAB and is verified by several benchmarks in MATPOWER $5.1$. Accurate results are obtained for power systems with up to $50$ independent random parameters, with a speedup factor up to $9\times 10{20}$.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.