Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

FactorBase: SQL for Learning A Multi-Relational Graphical Model (1508.02428v1)

Published 10 Aug 2015 in cs.DB and cs.LG

Abstract: We describe FactorBase, a new SQL-based framework that leverages a relational database management system to support multi-relational model discovery. A multi-relational statistical model provides an integrated analysis of the heterogeneous and interdependent data resources in the database. We adopt the BayesStore design philosophy: statistical models are stored and managed as first-class citizens inside a database. Whereas previous systems like BayesStore support multi-relational inference, FactorBase supports multi-relational learning. A case study on six benchmark databases evaluates how our system supports a challenging machine learning application, namely learning a first-order Bayesian network model for an entire database. Model learning in this setting has to examine a large number of potential statistical associations across data tables. Our implementation shows how the SQL constructs in FactorBase facilitate the fast, modular, and reliable development of highly scalable model learning systems.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.