Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 44 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Local Algorithms for Block Models with Side Information (1508.02344v1)

Published 10 Aug 2015 in stat.ML, cs.CC, cs.DC, and math.PR

Abstract: There has been a recent interest in understanding the power of local algorithms for optimization and inference problems on sparse graphs. Gamarnik and Sudan (2014) showed that local algorithms are weaker than global algorithms for finding large independent sets in sparse random regular graphs. Montanari (2015) showed that local algorithms are suboptimal for finding a community with high connectivity in the sparse Erd\H{o}s-R\'enyi random graphs. For the symmetric planted partition problem (also named community detection for the block models) on sparse graphs, a simple observation is that local algorithms cannot have non-trivial performance. In this work we consider the effect of side information on local algorithms for community detection under the binary symmetric stochastic block model. In the block model with side information each of the $n$ vertices is labeled $+$ or $-$ independently and uniformly at random; each pair of vertices is connected independently with probability $a/n$ if both of them have the same label or $b/n$ otherwise. The goal is to estimate the underlying vertex labeling given 1) the graph structure and 2) side information in the form of a vertex labeling positively correlated with the true one. Assuming that the ratio between in and out degree $a/b$ is $\Theta(1)$ and the average degree $ (a+b) / 2 = n{o(1)}$, we characterize three different regimes under which a local algorithm, namely, belief propagation run on the local neighborhoods, maximizes the expected fraction of vertices labeled correctly. Thus, in contrast to the case of symmetric block models without side information, we show that local algorithms can achieve optimal performance for the block model with side information.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.