Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Lifted Representation of Relational Causal Models Revisited: Implications for Reasoning and Structure Learning (1508.02103v2)

Published 10 Aug 2015 in cs.AI and cs.LG

Abstract: Maier et al. (2010) introduced the relational causal model (RCM) for representing and inferring causal relationships in relational data. A lifted representation, called abstract ground graph (AGG), plays a central role in reasoning with and learning of RCM. The correctness of the algorithm proposed by Maier et al. (2013a) for learning RCM from data relies on the soundness and completeness of AGG for relational d-separation to reduce the learning of an RCM to learning of an AGG. We revisit the definition of AGG and show that AGG, as defined in Maier et al. (2013b), does not correctly abstract all ground graphs. We revise the definition of AGG to ensure that it correctly abstracts all ground graphs. We further show that AGG representation is not complete for relational d-separation, that is, there can exist conditional independence relations in an RCM that are not entailed by AGG. A careful examination of the relationship between the lack of completeness of AGG for relational d-separation and faithfulness conditions suggests that weaker notions of completeness, namely adjacency faithfulness and orientation faithfulness between an RCM and its AGG, can be used to learn an RCM from data.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube