Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The graph spectrum of barycentric refinements (1508.02027v1)

Published 9 Aug 2015 in cs.DM, math.CO, and math.SP

Abstract: Given a finite simple graph G, let G' be its barycentric refinement: it is the graph in which the vertices are the complete subgraphs of G and in which two such subgraphs are connected, if one is contained into the other. If L(0)=0<L(1) <= L(2) ... <= L(n) are the eigenvalues of the Laplacian of G, define the spectral function F(x) as the function F(x) = L([n x]) on the interval [0,1], where [r] is the floor function giving the largest integer smaller or equal than r. The graph G' is known to be homotopic to G with Euler characteristic chi(G')=chi(G) and dim(G') >= dim(G). Let G(m) be the sequence of barycentric refinements of G=G(0). We prove that for any finite simple graph G, the spectral functions F(G(m)) of successive refinements converge for m to infinity uniformly on compact subsets of (0,1) and exponentially fast to a universal limiting eigenvalue distribution function F which only depends on the clique number respectively the dimension d of the largest complete subgraph of G and not on the starting graph G. In the case d=1, where we deal with graphs without triangles, the limiting distribution is the smooth function F(x) = 4 sin2(pi x/2). This is related to the Julia set of the quadratic map T(z) = 4z-z2 which has the one dimensional Julia set [0,4] and F satisfies T(F(k/n))=F(2k/n) as the Laplacians satisfy such a renormalization recursion. The spectral density in the d=1 case is then the arc-sin distribution which is the equilibrium measure on the Julia set. In higher dimensions, where the limiting function F still remains unidentified, F' appears to have a discrete or singular component.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube