Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 180 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Automatic 3D Liver Segmentation Using Sparse Representation of Global and Local Image Information via Level Set Formulation (1508.01521v2)

Published 6 Aug 2015 in cs.CV

Abstract: In this paper, a novel framework for automated liver segmentation via a level set formulation is presented. A sparse representation of both global (region-based) and local (voxel-wise) image information is embedded in a level set formulation to innovate a new cost function. Two dictionaries are build: A region-based feature dictionary and a voxel-wise dictionary. These dictionaries are learned, using the K-SVD method, from a public database of liver segmentation challenge (MICCAI-SLiver07). The learned dictionaries provide prior knowledge to the level set formulation. For the quantitative evaluation, the proposed method is evaluated using the testing data of MICCAI-SLiver07 database. The results are evaluated using different metric scores computed by the challenge organizers. The experimental results demonstrate the superiority of the proposed framework by achieving the highest segmentation accuracy (79.6\%) in comparison to the state-of-the-art methods.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.