Papers
Topics
Authors
Recent
2000 character limit reached

Automatic 3D Liver Segmentation Using Sparse Representation of Global and Local Image Information via Level Set Formulation (1508.01521v2)

Published 6 Aug 2015 in cs.CV

Abstract: In this paper, a novel framework for automated liver segmentation via a level set formulation is presented. A sparse representation of both global (region-based) and local (voxel-wise) image information is embedded in a level set formulation to innovate a new cost function. Two dictionaries are build: A region-based feature dictionary and a voxel-wise dictionary. These dictionaries are learned, using the K-SVD method, from a public database of liver segmentation challenge (MICCAI-SLiver07). The learned dictionaries provide prior knowledge to the level set formulation. For the quantitative evaluation, the proposed method is evaluated using the testing data of MICCAI-SLiver07 database. The results are evaluated using different metric scores computed by the challenge organizers. The experimental results demonstrate the superiority of the proposed framework by achieving the highest segmentation accuracy (79.6\%) in comparison to the state-of-the-art methods.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.