Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

INsight: A Neuromorphic Computing System for Evaluation of Large Neural Networks (1508.01008v1)

Published 5 Aug 2015 in cs.NE

Abstract: Deep neural networks have been demonstrated impressive results in various cognitive tasks such as object detection and image classification. In order to execute large networks, Von Neumann computers store the large number of weight parameters in external memories, and processing elements are timed-shared, which leads to power-hungry I/O operations and processing bottlenecks. This paper describes a neuromorphic computing system that is designed from the ground up for the energy-efficient evaluation of large-scale neural networks. The computing system consists of a non-conventional compiler, a neuromorphic architecture, and a space-efficient microarchitecture that leverages existing integrated circuit design methodologies. The compiler factorizes a trained, feedforward network into a sparsely connected network, compresses the weights linearly, and generates a time delay neural network reducing the number of connections. The connections and units in the simplified network are mapped to silicon synapses and neurons. We demonstrate an implementation of the neuromorphic computing system based on a field-programmable gate array that performs the MNIST hand-written digit classification with 97.64% accuracy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jaeyong Chung (2 papers)
  2. Taehwan Shin (1 paper)
  3. Yongshin Kang (1 paper)
Citations (12)

Summary

We haven't generated a summary for this paper yet.