Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Progressive EM for Latent Tree Models and Hierarchical Topic Detection (1508.00973v1)

Published 5 Aug 2015 in cs.LG, cs.CL, cs.IR, and stat.ML

Abstract: Hierarchical latent tree analysis (HLTA) is recently proposed as a new method for topic detection. It differs fundamentally from the LDA-based methods in terms of topic definition, topic-document relationship, and learning method. It has been shown to discover significantly more coherent topics and better topic hierarchies. However, HLTA relies on the Expectation-Maximization (EM) algorithm for parameter estimation and hence is not efficient enough to deal with large datasets. In this paper, we propose a method to drastically speed up HLTA using a technique inspired by recent advances in the moments method. Empirical experiments show that our method greatly improves the efficiency of HLTA. It is as efficient as the state-of-the-art LDA-based method for hierarchical topic detection and finds substantially better topics and topic hierarchies.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.