Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structured Prediction: From Gaussian Perturbations to Linear-Time Principled Algorithms (1508.00945v4)

Published 5 Aug 2015 in stat.ML and cs.LG

Abstract: Margin-based structured prediction commonly uses a maximum loss over all possible structured outputs \cite{Altun03,Collins04b,Taskar03}. In natural language processing, recent work \cite{Zhang14,Zhang15} has proposed the use of the maximum loss over random structured outputs sampled independently from some proposal distribution. This method is linear-time in the number of random structured outputs and trivially parallelizable. We study this family of loss functions in the PAC-Bayes framework under Gaussian perturbations \cite{McAllester07}. Under some technical conditions and up to statistical accuracy, we show that this family of loss functions produces a tighter upper bound of the Gibbs decoder distortion than commonly used methods. Thus, using the maximum loss over random structured outputs is a principled way of learning the parameter of structured prediction models. Besides explaining the experimental success of \cite{Zhang14,Zhang15}, our theoretical results show that more general techniques are possible.

Citations (8)

Summary

We haven't generated a summary for this paper yet.