Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Evolutionary Multimodal Optimization: A Short Survey (1508.00457v1)

Published 3 Aug 2015 in cs.NE, cs.AI, and q-bio.QM

Abstract: Real world problems always have different multiple solutions. For instance, optical engineers need to tune the recording parameters to get as many optimal solutions as possible for multiple trials in the varied-line-spacing holographic grating design problem. Unfortunately, most traditional optimization techniques focus on solving for a single optimal solution. They need to be applied several times; yet all solutions are not guaranteed to be found. Thus the multimodal optimization problem was proposed. In that problem, we are interested in not only a single optimal point, but also the others. With strong parallel search capability, evolutionary algorithms are shown to be particularly effective in solving this type of problem. In particular, the evolutionary algorithms for multimodal optimization usually not only locate multiple optima in a single run, but also preserve their population diversity throughout a run, resulting in their global optimization ability on multimodal functions. In addition, the techniques for multimodal optimization are borrowed as diversity maintenance techniques to other problems. In this chapter, we describe and review the state-of-the-arts evolutionary algorithms for multimodal optimization in terms of methodology, benchmarking, and application.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.