A cubic vertex kernel for Diamond-free Edge Deletion and more (1507.08792v2)
Abstract: A diamond is a graph obtained by removing an edge from a complete graph on four vertices. A graph is diamond-free if it does not contain an induced diamond. The Diamond-free Edge Deletion problem asks whether there exist at most $k$ edges in the input graph $G$ whose deletion results in a diamond-free graph. For this problem, a polynomial kernel of $O(k4$) vertices was found by Fellows et. al. (Discrete Optimization, 2011). In this paper, we give an improved kernel of $O(k3)$ vertices for Diamond-free Edge Deletion. Further, we give an $O(k2)$ vertex kernel for a related problem {Diamond,K_t}-free Edge Deletion, where $t\geq 4$ is any fixed integer. To complement our results, we prove that these problems are NP-complete even for $K_4$-free graphs and can be solved neither in subexponential time (i.e., $2{o(|G|)}$) nor in parameterized subexponential time (i.e., $2{o(k)}\cdot |G|{O(1)}$), unless Exponential Time Hypothesis fails. Our reduction implies the hardness and lower bound for a general class of problems, where these problems come as a special case.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.