Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Sinc Wavelet Describes the Receptive Fields of Neurons in the Motion Cortex (1507.08736v1)

Published 31 Jul 2015 in q-bio.NC, cs.CV, cs.IT, math.IT, and physics.bio-ph

Abstract: Visual perception results from a systematic transformation of the information flowing through the visual system. In the neuronal hierarchy, the response properties of single neurons are determined by neurons located one level below, and in turn, determine the responses of neurons located one level above. Therefore in modeling receptive fields, it is essential to ensure that the response properties of neurons in a given level can be generated by combining the response models of neurons in its input levels. However, existing response models of neurons in the motion cortex do not inherently yield the temporal frequency filtering gradient (TFFG) property that is known to emerge along the primary visual cortex (V1) to middle temporal (MT) motion processing stream. TFFG is the change from predominantly lowpass to predominantly bandpass temporal frequency filtering character along the V1 to MT pathway (Foster et al 1985; DeAngelis et al 1993; Hawken et al 1996). We devised a new model, the sinc wavelet model (Odaibo, 2014), which logically and efficiently generates the TFFG. The model replaces the Gabor function's sine wave carrier with a sinc (sin(x)/x) function, and has the same or fewer number of parameters as existing models. Because of its logical consistency with the emergent network property of TFFG, we conclude that the sinc wavelet is a better model for the receptive fields of motion cortex neurons. This model will provide new physiological insights into how the brain represents visual information.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)