Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

VMF-SNE: Embedding for Spherical Data (1507.08379v1)

Published 30 Jul 2015 in cs.LG

Abstract: T-SNE is a well-known approach to embedding high-dimensional data and has been widely used in data visualization. The basic assumption of t-SNE is that the data are non-constrained in the Euclidean space and the local proximity can be modelled by Gaussian distributions. This assumption does not hold for a wide range of data types in practical applications, for instance spherical data for which the local proximity is better modelled by the von Mises-Fisher (vMF) distribution instead of the Gaussian. This paper presents a vMF-SNE embedding algorithm to embed spherical data. An iterative process is derived to produce an efficient embedding. The results on a simulation data set demonstrated that vMF-SNE produces better embeddings than t-SNE for spherical data.

Citations (8)

Summary

We haven't generated a summary for this paper yet.