Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dimensionality-reduced subspace clustering (1507.07105v2)

Published 25 Jul 2015 in stat.ML, cs.IT, cs.LG, and math.IT

Abstract: Subspace clustering refers to the problem of clustering unlabeled high-dimensional data points into a union of low-dimensional linear subspaces, whose number, orientations, and dimensions are all unknown. In practice one may have access to dimensionality-reduced observations of the data only, resulting, e.g., from undersampling due to complexity and speed constraints on the acquisition device or mechanism. More pertinently, even if the high-dimensional data set is available it is often desirable to first project the data points into a lower-dimensional space and to perform clustering there; this reduces storage requirements and computational cost. The purpose of this paper is to quantify the impact of dimensionality reduction through random projection on the performance of three subspace clustering algorithms, all of which are based on principles from sparse signal recovery. Specifically, we analyze the thresholding based subspace clustering (TSC) algorithm, the sparse subspace clustering (SSC) algorithm, and an orthogonal matching pursuit variant thereof (SSC-OMP). We find, for all three algorithms, that dimensionality reduction down to the order of the subspace dimensions is possible without incurring significant performance degradation. Moreover, these results are order-wise optimal in the sense that reducing the dimensionality further leads to a fundamentally ill-posed clustering problem. Our findings carry over to the noisy case as illustrated through analytical results for TSC and simulations for SSC and SSC-OMP. Extensive experiments on synthetic and real data complement our theoretical findings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Reinhard Heckel (74 papers)
  2. Michael Tschannen (49 papers)
  3. Helmut Bölcskei (88 papers)
Citations (32)

Summary

We haven't generated a summary for this paper yet.