Papers
Topics
Authors
Recent
2000 character limit reached

Multi-scale exploration of convex functions and bandit convex optimization (1507.06580v1)

Published 23 Jul 2015 in math.MG, cs.LG, math.OC, math.PR, and stat.ML

Abstract: We construct a new map from a convex function to a distribution on its domain, with the property that this distribution is a multi-scale exploration of the function. We use this map to solve a decade-old open problem in adversarial bandit convex optimization by showing that the minimax regret for this problem is $\tilde{O}(\mathrm{poly}(n) \sqrt{T})$, where $n$ is the dimension and $T$ the number of rounds. This bound is obtained by studying the dual Bayesian maximin regret via the information ratio analysis of Russo and Van Roy, and then using the multi-scale exploration to solve the Bayesian problem.

Citations (74)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.