Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deep Fishing: Gradient Features from Deep Nets (1507.06429v1)

Published 23 Jul 2015 in cs.CV

Abstract: Convolutional Networks (ConvNets) have recently improved image recognition performance thanks to end-to-end learning of deep feed-forward models from raw pixels. Deep learning is a marked departure from the previous state of the art, the Fisher Vector (FV), which relied on gradient-based encoding of local hand-crafted features. In this paper, we discuss a novel connection between these two approaches. First, we show that one can derive gradient representations from ConvNets in a similar fashion to the FV. Second, we show that this gradient representation actually corresponds to a structured matrix that allows for efficient similarity computation. We experimentally study the benefits of transferring this representation over the outputs of ConvNet layers, and find consistent improvements on the Pascal VOC 2007 and 2012 datasets.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.