Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Sum-of-Squares Lower Bounds for Sparse PCA (1507.06370v2)

Published 23 Jul 2015 in cs.LG, cs.CC, math.ST, stat.CO, stat.ML, and stat.TH

Abstract: This paper establishes a statistical versus computational trade-off for solving a basic high-dimensional machine learning problem via a basic convex relaxation method. Specifically, we consider the {\em Sparse Principal Component Analysis} (Sparse PCA) problem, and the family of {\em Sum-of-Squares} (SoS, aka Lasserre/Parillo) convex relaxations. It was well known that in large dimension $p$, a planted $k$-sparse unit vector can be {\em in principle} detected using only $n \approx k\log p$ (Gaussian or Bernoulli) samples, but all {\em efficient} (polynomial time) algorithms known require $n \approx k2$ samples. It was also known that this quadratic gap cannot be improved by the the most basic {\em semi-definite} (SDP, aka spectral) relaxation, equivalent to a degree-2 SoS algorithms. Here we prove that also degree-4 SoS algorithms cannot improve this quadratic gap. This average-case lower bound adds to the small collection of hardness results in machine learning for this powerful family of convex relaxation algorithms. Moreover, our design of moments (or "pseudo-expectations") for this lower bound is quite different than previous lower bounds. Establishing lower bounds for higher degree SoS algorithms for remains a challenging problem.

Citations (75)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)