Papers
Topics
Authors
Recent
2000 character limit reached

Discriminative Segmental Cascades for Feature-Rich Phone Recognition (1507.06073v2)

Published 22 Jul 2015 in cs.CL

Abstract: Discriminative segmental models, such as segmental conditional random fields (SCRFs) and segmental structured support vector machines (SSVMs), have had success in speech recognition via both lattice rescoring and first-pass decoding. However, such models suffer from slow decoding, hampering the use of computationally expensive features, such as segment neural networks or other high-order features. A typical solution is to use approximate decoding, either by beam pruning in a single pass or by beam pruning to generate a lattice followed by a second pass. In this work, we study discriminative segmental models trained with a hinge loss (i.e., segmental structured SVMs). We show that beam search is not suitable for learning rescoring models in this approach, though it gives good approximate decoding performance when the model is already well-trained. Instead, we consider an approach inspired by structured prediction cascades, which use max-marginal pruning to generate lattices. We obtain a high-accuracy phonetic recognition system with several expensive feature types: a segment neural network, a second-order LLM, and second-order phone boundary features.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube