Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

MixEst: An Estimation Toolbox for Mixture Models (1507.06065v1)

Published 22 Jul 2015 in stat.ML and cs.LG

Abstract: Mixture models are powerful statistical models used in many applications ranging from density estimation to clustering and classification. When dealing with mixture models, there are many issues that the experimenter should be aware of and needs to solve. The MixEst toolbox is a powerful and user-friendly package for MATLAB that implements several state-of-the-art approaches to address these problems. Additionally, MixEst gives the possibility of using manifold optimization for fitting the density model, a feature specific to this toolbox. MixEst simplifies using and integration of mixture models in statistical models and applications. For developing mixture models of new densities, the user just needs to provide a few functions for that statistical distribution and the toolbox takes care of all the issues regarding mixture models. MixEst is available at visionlab.ut.ac.ir/mixest and is fully documented and is licensed under GPL.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.