Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Elastic Net Procedure for Partially Linear Models (1507.06032v1)

Published 22 Jul 2015 in stat.ME, math.PR, and stat.ML

Abstract: Variable selection plays an important role in the high-dimensional data analysis. However the high-dimensional data often induces the strongly correlated variables problem. In this paper, we propose Elastic Net procedure for partially linear models and prove the group effect of its estimate. By a simulation study, we show that the strongly correlated variables problem can be better handled by the Elastic Net procedure than Lasso, ALasso and Ridge. Based on an empirical analysis, we can get that the Elastic Net procedure is particularly useful when the number of predictors $p$ is much bigger than the sample size $n$.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.