Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Convex Sum-of-Squares Approach to Analysis, State Feedback and Output Feedback Control of Parabolic PDEs (1507.05888v3)

Published 21 Jul 2015 in cs.SY

Abstract: We present an optimization-based framework for analysis and control of linear parabolic partial differential equations (PDEs) with spatially varying coefficients without discretization or numerical approximation. For controller synthesis, we consider both full-state feedback and point observation (output feedback). The input occurs at the boundary (point actuation). We use positive matrices to parameterize positive Lyapunov functions and polynomials to parameterize controller and observer gains. We use duality and an invertible state-variable transformation to convexify the controller synthesis problem. Finally, we combine our synthesis condition with the Luenberger observer framework to express the output feedback controller synthesis problem as a set of LMI/SDP constraints. We perform an extensive set of numerical experiments to demonstrate accuracy of the conditions and to prove necessity of the Lyapunov structures chosen. We provide numerical and analytical comparisons with alternative approaches to control including Sturm Liouville theory and backstepping. Finally we use numerical tests to show that the method retains its accuracy for alternative boundary conditions.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.