Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The Power of Quantum Fourier Sampling (1507.05592v1)

Published 20 Jul 2015 in cs.CC and quant-ph

Abstract: A line of work initiated by Terhal and DiVincenzo and Bremner, Jozsa, and Shepherd, shows that quantum computers can efficiently sample from probability distributions that cannot be exactly sampled efficiently on a classical computer, unless the PH collapses. Aaronson and Arkhipov take this further by considering a distribution that can be sampled efficiently by linear optical quantum computation, that under two feasible conjectures, cannot even be approximately sampled classically within bounded total variation distance, unless the PH collapses. In this work we use Quantum Fourier Sampling to construct a class of distributions that can be sampled by a quantum computer. We then argue that these distributions cannot be approximately sampled classically, unless the PH collapses, under variants of the Aaronson and Arkhipov conjectures. In particular, we show a general class of quantumly sampleable distributions each of which is based on an "Efficiently Specifiable" polynomial, for which a classical approximate sampler implies an average-case approximation. This class of polynomials contains the Permanent but also includes, for example, the Hamiltonian Cycle polynomial, and many other familiar #P-hard polynomials. Although our construction, unlike that proposed by Aaronson and Arkhipov, likely requires a universal quantum computer, we are able to use this additional power to weaken the conjectures needed to prove approximate sampling hardness results.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.