Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Power of Quantum Fourier Sampling (1507.05592v1)

Published 20 Jul 2015 in cs.CC and quant-ph

Abstract: A line of work initiated by Terhal and DiVincenzo and Bremner, Jozsa, and Shepherd, shows that quantum computers can efficiently sample from probability distributions that cannot be exactly sampled efficiently on a classical computer, unless the PH collapses. Aaronson and Arkhipov take this further by considering a distribution that can be sampled efficiently by linear optical quantum computation, that under two feasible conjectures, cannot even be approximately sampled classically within bounded total variation distance, unless the PH collapses. In this work we use Quantum Fourier Sampling to construct a class of distributions that can be sampled by a quantum computer. We then argue that these distributions cannot be approximately sampled classically, unless the PH collapses, under variants of the Aaronson and Arkhipov conjectures. In particular, we show a general class of quantumly sampleable distributions each of which is based on an "Efficiently Specifiable" polynomial, for which a classical approximate sampler implies an average-case approximation. This class of polynomials contains the Permanent but also includes, for example, the Hamiltonian Cycle polynomial, and many other familiar #P-hard polynomials. Although our construction, unlike that proposed by Aaronson and Arkhipov, likely requires a universal quantum computer, we are able to use this additional power to weaken the conjectures needed to prove approximate sampling hardness results.

Citations (41)

Summary

We haven't generated a summary for this paper yet.