Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient moving point handling for incremental 3D manifold reconstruction (1507.05489v1)

Published 20 Jul 2015 in cs.CV

Abstract: As incremental Structure from Motion algorithms become effective, a good sparse point cloud representing the map of the scene becomes available frame-by-frame. From the 3D Delaunay triangulation of these points, state-of-the-art algorithms build a manifold rough model of the scene. These algorithms integrate incrementally new points to the 3D reconstruction only if their position estimate does not change. Indeed, whenever a point moves in a 3D Delaunay triangulation, for instance because its estimation gets refined, a set of tetrahedra have to be removed and replaced with new ones to maintain the Delaunay property; the management of the manifold reconstruction becomes thus complex and it entails a potentially big overhead. In this paper we investigate different approaches and we propose an efficient policy to deal with moving points in the manifold estimation process. We tested our approach with four sequences of the KITTI dataset and we show the effectiveness of our proposal in comparison with state-of-the-art approaches.

Citations (9)

Summary

We haven't generated a summary for this paper yet.