Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fast Sparse Least-Squares Regression with Non-Asymptotic Guarantees (1507.05185v1)

Published 18 Jul 2015 in math.ST, cs.CC, stat.ML, and stat.TH

Abstract: In this paper, we study a fast approximation method for {\it large-scale high-dimensional} sparse least-squares regression problem by exploiting the Johnson-Lindenstrauss (JL) transforms, which embed a set of high-dimensional vectors into a low-dimensional space. In particular, we propose to apply the JL transforms to the data matrix and the target vector and then to solve a sparse least-squares problem on the compressed data with a {\it slightly larger regularization parameter}. Theoretically, we establish the optimization error bound of the learned model for two different sparsity-inducing regularizers, i.e., the elastic net and the $\ell_1$ norm. Compared with previous relevant work, our analysis is {\it non-asymptotic and exhibits more insights} on the bound, the sample complexity and the regularization. As an illustration, we also provide an error bound of the {\it Dantzig selector} under JL transforms.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.