Papers
Topics
Authors
Recent
2000 character limit reached

Incremental Variational Inference for Latent Dirichlet Allocation (1507.05016v2)

Published 17 Jul 2015 in stat.ML

Abstract: We introduce incremental variational inference and apply it to latent Dirichlet allocation (LDA). Incremental variational inference is inspired by incremental EM and provides an alternative to stochastic variational inference. Incremental LDA can process massive document collections, does not require to set a learning rate, converges faster to a local optimum of the variational bound and enjoys the attractive property of monotonically increasing it. We study the performance of incremental LDA on large benchmark data sets. We further introduce a stochastic approximation of incremental variational inference which extends to the asynchronous distributed setting. The resulting distributed algorithm achieves comparable performance as single host incremental variational inference, but with a significant speed-up.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.